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LIQUID CRYSTALS, 1995, VOL. 18, No. 5,683-692 

On higher order variational analysis in one and 
three dimensions for soft boundaries 

by INGOLF DAHL* 
Physics Department, Chalmers University of Technology, S-412 96 Goteborg, 

Sweden 

and ARNOUT DE MEYERE 
Department of Electronics and Information Systems, University of Gent, 

Sint-Pieternieuwstraat 4 1,  B-9000 Gent, Belgium 

(Received 15 April 1994; accepted I3 July 1994) 

For some problems in liquid crystal physics we need to use the Euler equation and the 
corresponding boundary equation in the three-dimensional case with soft boundaries. As a further 
complication the free energy expression, which should be minimized, might contain some 
second-order and third-order derivatives. These higher-order derivatives will cause the spatial 
derivatives of the boundary normal to appear in the boundary equation. Explicit formulae are 
given for the Euler equation and the corresponding surface equations for a general case. As an 
example, the theory is applied to nematic liquid crystals, where the general Euler equations and 
surface molecular fields are derived, including the effects of an imposed electric field. 

1. Introduction 
Variational analysis is used in different areas of physics 

to find the differential equation for the function that 
minimizes a given integral. An introduction to this subject 
can be found in for instance Arfken [I]. For nematic liquid 
crystals, variational analysis could be used to find 
the equilibrium conditions for the director field, if the 
boundary conditions and the expression for the deforma- 
tional energy are known. Sometimes, however, the 
physical problems are a little too complicated to be solved 
by straight application of the textbook case. In this paper 
we are interested in including higher order derivatives of 
the function in the integral, and also in including variable 
boundary conditions. This enables us to solve some 
problems in the physics of liquid crystals. In the elasticity 
theory of nematics there are two terms involving second 
order derivatives in the volume free energy 

+ ii x (V x ii)), (1) 

where KL3, K22r and K24 are elastic constants and B is the 
nematic director, according to the notation of Nehring and 
Saupe [2] .  Both these terms measure the divergence of 
some vector field. In the elasticity theory of smectic C, 

* Author for correspondence. 

there are twelve similar terms, see [3] 
12 

C EviV-ei, (2) 
i- 1 

where ei denote flexoelectric vector fields and Evi are the 
corresponding elastic constants. The interpretation of 
these divergence terms has for nematics caused a 
never-ending discussion [4-141. Evidently we can use 
Gauss' theorem to rewrite these volume terms as surface 
terms, and for his reason we denote them 'gauge term' 

The surface energy will not contribute to the Euler 
equations for the internal volume elements, and thus these 
equations must in some way be invariant to our application 
of the Gauss' theorem. This could be achieved in a simple 
way if the gauge terms do not contribute to the Euler 
equations for the internal volume elements. Also the gauge 
terms should influence the boundary conditions in the 
same way if they are written as volume terms as if they are 
rewritten as surface terms. As surface energy terms, the 
gauge terms depend on the spatial derivatives of the 
orientation of the liquid crystal. Then we will not obtain 
the standard type of fixed boundary condition for the Euler 
equations. Some of these gauge terms involve second- 
order derivatives of the director or C-director, and this 
implies that we may have to use second-order variational 
theory [lo, 11,161. In the elasticity theory of the smectic 
C phase, even third order derivatives might enter. These 
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684 I. Dahl and A. De Meyere 

issues in the physics of liquid crystals justify an investiga- 
tion of a mathematical problem: how to extend the 
variational calculus so that the extra complications of 
higher-order derivatives, three dimensions, and soft 
boundaries can be included. 

In this article we will first look at a one-dimensional 
analogue to the free energy, and derive the Euler equation 
for the case of variable boundary conditions. The 
boundary conditions are controlled by a boundary energy 
expression, corresponding to the surface energy for 
the three-dimensional case. To simulate the action of the 
gauge terms, and to illustrate the difficulties introduced by 
these, we will let the boundary energy depend on the 
spatial derivative of the variable function. Some authors 
use the method of ‘extremals’ to solve such a variational 
problem. We will point out some difficulties in such an 
approach. Instead we have to introduce higher-order terms 
in the volume free energy, so that the variational problem 
becomes well stated. We solve then the corresponding 
variational problem for the three-dimensional case. 
The results are applied to the elasticity theory of nematic 
liquid crystals, and explicit expressions for the surface 
molecular fields are given in general vector notation. 

2. Variation calculus at the surface in the 
one-dimensional case 

For the sake of discussion, let us rederive the Euler 
equation for one dependent and one independent variable 
by calculus of variations, using the formalism of Arflcen 
[ I ] .  Instead of fixed boundary conditions, we shall assume 
variable boundary conditions and an energy contribution 
from these (‘soft boundaries’). For instance Oldano and 
Barbero [17] have discussed this case in connection with 
liquid crystal problems. Here we are interested in the end 
conditions, since the arguments should be transferable to 
the boundary conditions for liquid crystals. Let us thus 
minimize the quantity 

J = 6 gv(u, ux, x) dx - gdu, Uxr XI) + gs(u, Uxr x2)- (3) 

We can see this as a one-dimensional analogue to the 
elastic free energy expression for liquid crystals. Here g, 
and g, are known functions of the indicated scalar 
variables u, u, = dJd,, and x ,  but the dependence of u on 
x is not fixed, so u(x)  is unknown. The signs for the end 
contributions g, have been chosen so that we obtain a 
convenient notation below. In the same way as in Arfken, 
we will use an arbitrary deformation q(x) and a scale factor 
a, and make a small variation around the path u(x, a =  0), 
which minimizes the quantity J.  Thus, 

u(x, a) = u(x, 0) + aq(x). (4) 

For our more general case we cannot assume as Arfken did 
that q(x1) and q(x2) are zero. The quantity J now becomes 

a function of a, 
x2 

J = I,, gdu(x, co, ux(x, 4 , X ) d x  - gs(u(x1, a), Ux(X1, c0,Xl) 

( 5 )  
The derivative of J with respect to 01 should be zero for the 
extreme value at a = 0. In the standard way by integration 
by parts we obtain 

+ gs(u(x2, a), ux(x2, co, x2). 

which thus should be zero for a = 0. In the interior of the 
interval (x1,x2) we can use test functions q(x), which 
vanish at the border, and also have a vanishing derivative 
at the border. Thus, the Euler equation, 

(7)  

must be satisfied inside the interval. Due to the term, 
the end condition is more difficult to handle. Oldano and 
Barbero [17] assume that q(x) and dqldx could be varied 
independently at the border, and in this way they get four 
boundary conditions, two at each border. Since the Euler 
equation, at least for their special case, depends only on 
two independent parameters, they obtain an overdeter- 
mined set of equations. Usually this set has no solution. 
In this way they found a kind of paradox. 

3. The method of extremals 
The method of extremals [7] has been suggested as a 

strategy to solve this paradox. By this method, we should 
not vary both q(x )  and dqldx independently at each border. 
Instead, we should restrict the variational problem to such 
functions that satisfy the Euler equation in the interior. 
These functions are denoted ‘extremals’. For each set of 
boundary conditions for u(x1) and u(x2), the Euler equation 
for the interior will give us back a value for dqldx at the 
end points. This determines the relation between q(x)  and 
dqlan. Thus, by varying the boundary conditions and by 
solving the Euler equation for each choice, it could be 
possible to minimize the J expression, without any 
paradoxes. It is a bit discomforting that no local expression 
similar to the Euler equation is available, but anyway we 
may have to live with that. We could however find a global 
condition: Assume that a now is a general parameter such 
that u(x, a) satisfies the Euler equation for each choice of 
a. With 

J = c gv(u(x, 21, ux(x, a>,x)dX - gs(u(x1, a), ux(x1. a) ,x l> 

+ gs(u(x2, x ) ,  ux(x2, x ) ,  x2>, (8) 
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Variational analysis for soft boundaries 685 

the derivative with respect to a is given by equation, but add to it the test function 

But since u satisfies the Euler equation (7), we get 

(9) 

and thus 

which should be zero for a function that gives an extreme 
value of J.  The factor a could here be the end value u(x l )  
with 4 x 2 )  kept fixed or vice versa. 

Thus one might expect to find extreme values to the 
quantity J when the set of functions u(x) is limited to 
the extremals that satisfy the Euler equation inside the 
interval ( ~ 1 . ~ 2 ) .  But this set of functions has not been 
defined in the specification of the problem. It has instead 
been chosen as a part of the solution of the problem. 
If some function in this set is giving J an extreme value, 
this method of extremals will find it. However, as usual 
with variational analysis, we are not guaranteed that any 
function found will be the one that we are looking for. 
It is even worse than that, since in the general case we 
could find other functions, outside the set of extremals, 
which give lower values of the integral J than any 
candidate from the set of extremals. To illustrate this, let 
us assume that there is a minimizing function u* in the set 
of extremals. We could try to find a local end condition, 
by noting that it is possible to restrict the interval. Any 
solution id*, minimizing J ,  also minimizes 

AJ= ~ + ~ g , ( u , u , , x ~ ~ - g s ~ u , u x , x 1 ~  (12)  

for fixed boundary conditions u * ( x ~  + 6) and U * ( X I  + 6 )  
for u and ux in the point x =XI + 6. This is found by using 
a test function q(x) with a continuous derivative and with 
q(x)  = 0 forx > x1 + 6. If the function u* satisfies the Euler 
equation, the boundary conditions are strong enough to 
determine u* completely, and we have nothing to vary for 
each fixed boundary condition. However, if we allow a 
breakdown near the surface, we could check for stability. 
We can use a function u*(x,O), satisfying the Euler 

(13) 
multiplied by the scalar a. In general, the sum u(x, a) will 
then not satisfy the Euler equation. This test function gives 

q(x)  = (x - XI - s)2, 

For a = 0 the integral in equation (14) vanishes, thus 

If a = 0 should give a minimum, this expression should be 
zero. But 6 could be chosen in an arbitrary way, and by 
varying 6 we get two conditions which must be satisfied 
simultaneously 

and 

If there are first order derivatives u, in the surface 
expression gs, then these two conditions could not in 
general be satisfied simultaneously at both ends of the 
interval. Thus we have to look for functions u(x) not 
satisfying the Euler equation to minimize J.  But also, we 
know that any function minimizing J should satisfy the 
Euler equation inside the interval. So we might get a 
contradiction from the assumption that a regular function 
is minimizing J.  

We have thus a dilemma and a choice: either we restrict 
the allowed set of functions to those satisfying the Euler 
equations, and could then eventually obtain a well-defined 
minimum, or we allow a larger set of functions, and will 
then probably have to look for functions with singular 
behaviour near the end points. The mathematics thus tells 
us to return to our physical problem and to study it more 
closely to be able to specify the mathematical problem in 
a better way. It is reasonable that this conclusion is also 
valid in the three-dimensional case. 

4. The method of second-order derivatives 
Another way to look at the expression 

J = I:' gv(u, u,,x)dx - gdu, UX,XI) + gs(u9 UX,X2> (18) 

is to see it as a special case of the integral 

J2 = gv(u, ux, uu, x> dr - gdu, ux. + gs(u, ux,xz), 

(19) 
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686 1. Dahl and A. De Meyere 

thus involving also second-order derivatives. With the 
same kind of test function as in (4), we obtain 

If the function gv contains terms of the type u;, the Euler 
equation 

----+-'=o ag, a ag, a2 ag 
au ax a ~ ,  ax2 au,, 

will be of fourth order, and thus we have four unknown 
constants to be determined to the boundary conditions. 
Thus we can allow two boundary conditions at each end 
of the interval, and can allow the independent variation of 
q(x) and aqldx. At the X I  end we then get 

+- = o  (22)  a ag, 

and 

= O .  ( 23 )  

Thus, the variational problem will have a well-defined 
mathematical solution. If we use a simple test function 
for f 

(24) g, = Au, + Bu;, 

we can easily see that a non-zero B will introduce two extra 
solutions to the Euler equation. These solutions are 

2 

u = e x p ( * x  &), 
while the other solutions, 

and 
u = x  

u =  1, 

are not dependent on the size of B.  In a given problem, we 
have to match a linear combination of these solutions to 
the boundary conditions. If the second-order elastic 
constant B is small enough, it will only affect the boundary 
layers. In the interior of the volume the first-order 
elasticity will control the behaviour. 

Thus the introduction of quadratic terms in the 
second-order derivatives essentially solves the dilemma 
introduced by gradient terms as boundary conditions. But 
for nematics, we then face the problem of using a full 
second-order elasticity theory in the sense of Barber0 etal. 
[lo], and that requires the introduction of a huge number 

of additional elastic constants. Maybe just a few of these 
are needed to control these gradient terms? It is also of 
interest to see under which geometrical conditions these 
gradient terms could be important. We then need the 
second order Euler equations in the 3D case. 

5. Variation calculus at the surface in three 
dimensions 

When we go to the three-dimensional case, and also 
want to include second-order terms and variation at the 
surface, we will encounter some new complications, 
which we do not have to worry about in simpler cases. Let 
us thus extend the integral J to cover three dimensions 

J = gv(u, ui, uip xi) dV + gdu, x,) dS, (27) I I, 
where the surface S encloses the volume V and where u, 
are the first order derivatives of u with respect to the spatial 
derivatives, and uIJ are the second order derivatives. By the 
standard procedure by adding a small disturbance aq(xJ, 
we obtain 

where si are the components of the normalized outward 
surface normal 8, qi are the derivatives of q with respect 
to the coordinate xi, and repeated indices are summed over. 
Note in this expression that when we give the full 
functional form of g,, we have to discriminate between 
terms containing u12 and terms containing u21, to avoid 
counting them twice when we take the derivatives of g, 
with respect to these two variables. We thus get the usual 
Euler equation for variation of q inside the volume 

To find the corresponding surface expressions, we 
cannot simply let q and qi vary independently at the 
surface. If we know the value of yl at the surface, we have 
also full information about how it varies along the surface, 
but no information about how it varies along the surface 
normal. This could be described mathematically by a 
theorem, similar to Gauss' theorem, but only involving 
surface integrals. To derive this theorem, we start with 
Stokes' theorem applied to a closed surface 

js 9.(V x V)dS = 0. (30) 

If we now make the substitution V t qv X 8,  where v is a 
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Variational analysis for  soft boundaries 687 

vector field, we get the theorem 

Is (Vq)*vdS = - qb.(V X (b X v) )dS  i 
+ 1 (8 Vq)(I v)  dS. (31) 

This theorem can be applied to the last integral in equation 
(28) if we define v as the vector that has the components 

The surface part of dJlda becomes then 

+ I, s;q;sjv,dS. (33) 

Now it should be possible to vary q and I * V q  = siqi (the 
derivative of q along the surface normal) independently at 
the surface, and in this way we obtain the surface 
conditions corresponding to the Euler equation. For q we 
get what we will call ‘the first surface relation’ 

and for siqi we get ‘the second surface relation’ 

sjvj = 0. (35) 

The expressions obtained are not fully symmetric with 
regard to interchange of the indices in u,. To obtain such 
symmetry, we can require that the second order derivatives 
q, of the variation q should be independent of the 
derivation order: 

Vij = Vj;. (36) 

Then we can interchange the order in which we do the 
partial integrations in the derivation of equation (28), and 
that will result in expressions similar to equations (29), 
(32), (34), and (35), just with uij replaced by uj;. Thus, by 
subtracting and adding these new equations with the 
original ones, we conclude that g ,  must satisfy the relation 

(37) 

and that in the Euler equation (29), in the definition (32) 
of vi, and in the two surface relations (34) and (35) we 
should make the replacement 

which we denote . (38) ~ 

au(ij) 

If instead we consider uij and uji as the same variable, we 

can define a functional derivative, which we might denote 

(39) 

If we would prefer to use this derivative in the expressions, 
we also have to change the summing range of i andj  or to 
introduce an inconvenient numeric factor, since 

but 

To avoid this factor in the expressions, we keep to the 

To make the definition of the mixed functional derivate 

(41) 

notation introduced in equation (38). 

completely clear, let us have an example. If 

g, = u:, + u:, + u:, 

we will get 

= 2 U l l  (42) 

but 

while 

(43) 

To simplify the surface expressions, we can assume that 
we are studying a regular region of the surface. As a 
regularity requirement we can demand that we define an 
environment to the surface region such that the surface can 
be seen as a member of a set of parallel surfaces. Then this 
set defines the direction of the surface normal, not only 
exactly at the surface, but also in an environment of the 
surface. The normal I in a point slightly outside the surface 
is then simply defined as the direction of that unique 
surface normal that emanates from a surface point in the 
neighbourhood and passes through the point of study. 
Then the surface normal can be seen as the gradient of a 
potential function, measuring the distance from the 
surface, defined so that the rotation of I will vanish. Thus 
VI  in all regular surface points will be symmetric in any 
coordinate system, with 

(45) 

Moreover, the unit length of the surface normal gives us 
the relations 

as1 
sisi = 1 and si - = 0. ax, 

By inserting the definition of v, and carrying out the 
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688 I. Dahl and A. De Meyere 

differentiation in the first surface relation, using 
the symmetry of the Vb tensor and the normalization of 9, 
we could rewrite the first surface relation in a form where 
the dependence on the surface topography is clearer 

We see from this equation how derivatives of the surface 
normal get involved if second-order derivatives are 
present in g ,  or if first order derivatives are present in g,. 
The last term in equation (47) gives surface derivative 
terms connected to the surface energy g,, but more such 
contributions could appear if g, is dependent on the surface 
normal. 

The second surface relation can be rewritten in the same 
way as 

+ s, - = 0. (48) 

This equation could be used to simplify somewhat the first 
surface relation 

agv 
slsJ ~ 

au( lJ )  aul 

In the first surface relation, it may look peculiar that we 
have to take the spatial derivatives of the vector v, which 
should only be defined at the surface. However, the term 
S - (V X (S X v)), visible in equation (3 l), will only pick out 
the variation along the surface, and this property is 
inherited by the later equations. 

We can note that Barber0 et al. [l 11, for the case of the 
nematic director, overlooked the necessity of differentiat- 
ing between variation of q along and normal to the surface, 
and thus arrived at four boundary conditions for each 
component of the nematic director, given by their equation 
(1 5 )  and (16), instead of our two equations (48) and (49). 

6. Relation between this work and the papers by 
Toupin, Ericksen, and Hinov 

The results in this paper up to the volume part of 
equation (48), had already been derived by Ericksen [ 181 
quite a long time ago, based on work by Toupin [19]. 
However, neither Toupin nor Ericksen mentions the 
difficulty in the definition of the second-order mixed 
functional derivative. Since the equations are suitable as 
a starting point for future work, it is important that this 
point is clear. 

There also seems to be a sign difference between 
equation (87) of the Ericksen article and equation (47) of 
the present paper. If Ericksen’s expression for F 3  reads 

F 3  =pkVk - b m m f i k V I V k  - D,(f,kVk) (50) 

in his notation, with a minus instead of a plus before the 
b,, term, it would agree with the expression here. If we 
proceed as above, and use the second surface relation, the 
b,, term can be eliminated anyway. 

The integral identity 

Di(fV,) d s  = - (bkkV,VJ)fdS, (51) s 
between equations (85) and (86) in the same article by 
Ericksen is correct, and agrees with our equation (31), but 
does not agree with the ‘simplified and corrected version’ 
in equation (22) in Hinov [6]. The integral relation might 
be checked by using a test function 

f = x z  ( 5 2 )  

integrated over the surface of a unit sphere for i = 1 and 
j = 3. If this relation is wrong in the Hinov paper, this may 
have caused secondary errors in his further calculations. 

7. Third-order variational calculus 
If we also include third-order derivatives, we could do 

this by the same principles, but we of course obtain a larger 
volume for the mathematical formulae. First the integral 
J has to be extended to 

where uvk are the third-order derivatives. The third-order 
volume contributions and the second-order surface 
contributions to dJ/da are 

a agv qjs j - -dS+ -I, axkauijk 

where q y  are the second order derivatives of q with respect 
to the coordinate xi. We have still the same kind of trouble 
in discriminating between variables with different differ- 
entiation order, for example, 11123 and ~ 3 1 2 ,  as we had for 
the second-order terms, but now we have more variants to 
monitor. But the Euler equation for variation of q inside 
the volume does not contain any surprises: 
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Variational analysis for soft boundaries 689 

In the derivation of the surface expressions, we derived a 
theorem (see equation (3 1)) from Stokes’ theorem. We can 
use that theorem again to rewrite the third integral in 
equation (54). To take care of the last integral in equation 
(54), we have to supplement this theorem by one that is a 
bit more spacious. The idea is to reduce the expression so 
that they contain only the variation q and its derivatives 
along the surface normal. Let US substitute V in Stokes’ 
theorem by 

in tensor notation, with &jjk as the Levi-Civita symbol, and 
v h  as a symmetric tensor. For a regular surface, with 
symmetric tensor Vb, we get 

To apply this relation to equation (54), vij should be chosen 
as 

(59) 

where we use the symmetric form of the derivatives. 
We might now apply the theorems derived in order to 
reduce the surface integrals, so that they will only contain 
one of factors 

These quantities could be varied independently, and will 
give us the first, second and third surface equation. After 
permutation of the indices in all possible ways, we obtain 
the third surface equation 

The second surface equation, after a simplification by the 
third surface equation, becomes 

The first surface equation, after simplification by both the 
second and the third surface equations, becomes 

as, ask a’sk asj a 
axj au(,) axj axm axiaxj dxk axi 

- asi 2, + (& - - + ~ +3- -  

8. Nematic liquid crystals as an example 
To be able to apply these results, we will look at the 

elasticity theory of nematic liquid crystals, as an example. 
The Euler equation for nematics, including the now 
conventional elastic terms, are available in, for instance, 
de Gennes [20],  but the corresponding surface equations 
are not equally easily found. The energy expression, which 
we will use, is composed by elastic and electric energy 
terms, 

(64) 

(65) 

elastic 
constants. K13 and Kz4 are the elastic constants for the 
‘gauge’ terms, which could be transformed to surface 
terms by Gauss’ theorem. The K * term was introduced by 
Barber0 et al. [ 101, to avoid the paradox introduced by the 
K13 term. The influence of the local value of an external 
electric field E is determined by the dielectric tensor E and 
the flexoelectec coefficients e + and e - . The electric field 
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690 I. Dahl and A. De Meyere 

is assumed to be due to a regulated voltage source. 
The volume free energy density should, in the case of soft 
boundary conditions, be supplemented by a surface free 
energy 

g, = - Wnem(r)(fi fi,12 + E,l(r)d v1 

+ E\2(r)d*(vl - v3) - e,(r)(d.fi)(fi.E) 

+ K,(r)(d ii)(d (E X fi)). (66) 

Here d is the surface normal, pointing out from the liquid 
crystal. Wnem(r) is the interaction coefficient determining 
the degree of alignment to some preferred direction fi,, 
attached to the surface. A more general interaction could 
be modelled by the introduction of two different preferred 
directions, but the generalization to that case is trivial. 
E,l(r) and EsZ(r) are the two surface constants connected 
to the elastic gauge-term volume constants K13 and 
(K22 + KZ4). The constant e,(r) determines the strength of 
the surface flexoelectric effect [21], and the K,(r) term 
describes the simplest possible surface electroclinic 
behaviour, of chiral nature [14]. All the surface constants 
here could be dependent on the nature of the substrate 
material, and thus they could vary in size between different 
points at the surface. 

In the derivation of the Euler equation we must take care 
of the condition 

f i . f i i=  1 (67) 

and that is done by subtracting the Lagrange multiplier 
term 

A(r)(fi-ii - 1) (68) 

from the volume energy density g,, and the corresponding 
term 

&(r)(ii- fi - 1) (69) 

from the surface energy density. We will get one Euler 
equation for each component a, of ii, and these can in 
traditional way [20] be added to give a vector relation 

h = - A(r)ii, (70) 

where h is called the molecular field. Thus at equilibrium, 
the h field should be directed along the director. Any 
component of h parallel to the director will only serve the 
purpose of determining &r), which is of no interest to us. 
We are only interested in the two relations we obtain when 
we specify the two components normal to the director to 
be zero. Ignoring parts of h that are always parallel to the 
director, and assuming the relation V X E = 0, we could 
write h explicitly. The required calculations, component 
for component, are quite extensive, and the program 
Mathematiccl has been of great help in the derivations 

below. The Muthernatica files may be obtained from 
Ingolf Dahl. 

h=K1IV(V.fi)-KZ2{(ii'(VXfi))(VXfi) 

+ v x (ii(ii-(V x fi)))} + K33I(fi x (V x 6)) 

x (V x ii) + v x  (ii x (ax (V x fi)))} 
- 2K22qoV X ii - K"(V.V)% + A&(fi*E)E 

- 2e+(fi-V)E +e-(E(V*ii) - V(E*fi) 

+ V X (E X fi) - E X (V X fi)), (71) 

where A c  is the dielectric anisotropy, 

A& = ~ 1 1  - EL. (72) 

The e -  term here agrees with the flexoelectric term 
derived by Fan [22]. To simplify the mathematics he 
assumed that the e +  constant was zero. 

We might ask here: what happens if we add a variation 
of equation (68) to the free energy? We might for instance 
subtract 

(73) 

from the volume free energy. The answer is that this term 
only gives another contribution along the director, and 
thus does not change the situation for the volume Euler 
equation, with the molecular field aligned along the 
director. The situation will change, however, when we 
change over to look at the corresponding surface 
equations. The volume Lagrange multiplier A(r) does not 
contribute to the first or second surface equations, while 
the term equation (73) contributes to both, fortunately in 
a manageable way, as we will see below. We have looked 
for other terms, similar to equation (73), but have not 
found any contributing in any non-trivial way to the 
theory. 

The surface Lagrange multiplier A,(r) will enter the first 
surface equation in the same way as the Lagrange 
multiplier entered the Euler equation, and thus we can 
define a surface molecular field hl, such that 

&,(r)v2(ii - ii - 1) 

h, = - A,(r)fi (74) 
that at equilibrium should be directed along the director. 
This molecular field is explicitly 

hi = - K11(V*ii)b - K22(ii'(V X fi))(fi X d) 

+ K33(fi X (V X &))(a - fi) - K22qo(fi X 8) 

+ ( e +  + e,(r)){(iI-E)d + (fi.d)E} + e -  ((ii.E)d 

- ( f i * S ) E }  + $(K13 + ESl(r)){ - 28(d.(8.V)fi)  
- S(V.ii) + V(d.fi) - v x (a x ii) + d x (V x fi) 
+ 2(fi*V)d) - ( f i .d)8  x (8 x V&(r)) 

+ +(KZ2 + KZ4 - 2E,2(r))(d(V-fi) - V(d-fi) 
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+ v x (L x ii) - I  x (V x ii) + (I.V)fi} 

- fi X (I X VES2(r)) + 2K*(I*V)V2fi 

- 2AlaP(r)(I V)ii + 2 Wnem(r)(fi ii,)ii, 

+ K,(r){fi X E - (@*E)ii x O 

+ 2(fi*P)E X 0) ,  (75) 

(Vii)o = n,,,s, (76) 

(77) 

The three second surface equations, one for each 
component of fi, could also be added to give a vector 
relation. We thus get a second surface molecular field h2, 
defined by 

h2 = - (KI3 + Esl(r))(ii - @)I + t(K22 + K24 

where 

and 

(S * (I * V ) i )  = sjsflj, k .  

- 2Es2(r))ii - 2K *V2ii - 2Aap(r)fi. (78) 

This vector field should vanish completely at equilibrium. 
We could use this relation to solve for Il,(r) at the surface 
by taking the component along ii 

211,(r) = - (K13 + Esl(r))(fi*S)2 + ~ ( K z z  + K24 

- 2ES2(r)) - 2K*ii-V2fi. (79) 

The two components orthogonal to fi could be separated 
out by taking the vector cross product by fi, and so we 
could define a third surface molecular field 

h3 = ii X h2 = - (K13 + Esl(r))(fi - I)fi X I 

- 2K *ii X V2B, (80) 

and thus this vector should also vanish at equilibrium. 
When the Lagrange multipliers have been eliminated, we 
thus end with two 2D boundary conditions in the form of 
two surface molecular fields hl and h3 that both should 
have vanishing components orthogonal to the director. 
When &,(r) is eliminated from hl, it will be of the form 

hi = - Kli(V*fi)I- K22(fi*(V X fi))(fi X I) 

+ K33(8 X (V X ii))(I*fi) - K22q0(A X I) 

+ ( e +  +es(r)){(ii.E)I+(ii-I)E} +e-{(i i*E)b 

- ( f i . S ) E ]  + +(K13 +Esl(r)){ - 2(G.(S*v)fi)I 

- I(V.fi) + V(I-ii) - v x (5 x ii) + I x (V x a) 
+2(A*V)S +2(fi.I)z(I.v)fi) - (fi.S)S 

X (6 X VEdr)) + h(K22 + K24 

- 2Es2(r)){S(V-ii) - V(S-ii) + V X (8 x fi) 
- 1 x (V x ii)} - ii x (I x VEs2(r)) 

+ 2K * { (S - V)V2fi + ((I * V)fi)fi * v2fi J 

+ 2Wnem(r)(ii-fis)iis + K,(r){fi X E 

- (E.E)ii X L + 2(ii*I)E X I) .  (81) 

In this approach we of course m i s s  all non-conservative 
forces that could be present at a real surface. Our ambition 
here was to obtain the correct and explicit form of the 
conservative forces. 

9. The nematic K13 and KM terms 
Barbero et al. 11 11, have discussed the elastic constant 

Kl3. They consider the local free energy density as a 
function of deformation sources: g ,  = gv(ni,j; ni,jk; . . .). 
where ni are the components of the nematic director and 
ni,j and ni,jk denote the first- and second-order spatial 
derivatives. They assume as deformation sources these 
first- and second-order derivatives ni,, and ni,,k. To simplify 
the arguments by Barbero et al., they ignore the second- 
order deformation sources in a first-order theory, and in a 
full second-order theory they have to include such terms 
as squares of the variables ni,jk, normally ignored in the 
elasticity theory. If these squares of the variables n,.jk, 
normally ignored in the elasticity theory. If these squares 
are included, the Euler equation becomes of fourth-order. 
What we have tried to achieve for the nematic case, is to 
find a correct, reasonably general, and reasonably simple 
form of these equations. From the definition of the 
vanishing hj field in equation (go), we easily see that a 
non-zero K13 elastic constant either requires that the 
director is parallel or orthogonal to the surface or requires 
a non-zero second-order elastic constant, such as K*. 
One could define more anisotropic second-order elastic 
constants to complicate the mathematics further, but we 
doubt that this is worthwhile. 

From the first surface molecular field hl, we can see 
that the K13 term, as the only term, involves the 
surface topography via the spatial derivatives of 
the surface normal. 

Both the nematic gauge terms are nilpotent according to 
the terminology of Ericksen [4], and vanish from the Euler 
equations. Ericksen showed that the nematic K24 term is 
nilpotent, but it is quite easy to verify that the K13 term 
is also nilpotent if second-order deformation sources are 
allowed in the free energy. It looks rather peculiar that the 
KZ4 term appears in the second surface molecular field h2, 

but that is connected with the fact that we have to use the 
condition 

V(ii * ii - 1) = 0 (82) 

to prove the nilpotency of the K24 term. It is then logical 
that this contribution to the molecular field will be 
removed by the appropriate choice of the Lagrange 
multiplier 11,( r). 
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10. Summary 
In order to find the correct boundary conditions for 

liquid crystals, the variational analysis with soft 
boundaries is discussed. The gauge terms is the volume 
free energy, which could be rewritten by Gauss’ theorem 
as surface terms, are conceptually difficult to handle. In the 
one-dimensional case, such terms could cause instabilities 
near the surfaces. To prevent instabilities, we could use a 
restricted set of functions when we do the variational 
analysis, but the restrictions have to be imposed in an 
unsatisfactory way. A better method is to introduce some 
higher-order terms in the volume free energy. Then the 
three-dimensional case becomes a non-trivial, but 
solvable extension of the one-dimensional case, since in 
three dimensions we have to differentiate between normal 
and tangential derivatives at the boundary. The equilib- 
rium equations in a volume element and at the surface are 
derived, and the result is applied to the case of nematic 
liquid crystals, where explicit expression are given. 
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